首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18716篇
  免费   799篇
  国内免费   577篇
  2024年   19篇
  2023年   168篇
  2022年   233篇
  2021年   319篇
  2020年   377篇
  2019年   575篇
  2018年   592篇
  2017年   296篇
  2016年   418篇
  2015年   674篇
  2014年   1110篇
  2013年   1314篇
  2012年   690篇
  2011年   1121篇
  2010年   799篇
  2009年   965篇
  2008年   980篇
  2007年   1079篇
  2006年   976篇
  2005年   918篇
  2004年   787篇
  2003年   712篇
  2002年   600篇
  2001年   423篇
  2000年   379篇
  1999年   388篇
  1998年   387篇
  1997年   291篇
  1996年   275篇
  1995年   304篇
  1994年   260篇
  1993年   205篇
  1992年   178篇
  1991年   153篇
  1990年   137篇
  1989年   118篇
  1988年   100篇
  1987年   100篇
  1986年   54篇
  1985年   92篇
  1984年   137篇
  1983年   95篇
  1982年   86篇
  1981年   50篇
  1980年   45篇
  1979年   34篇
  1978年   18篇
  1977年   14篇
  1976年   12篇
  1974年   14篇
排序方式: 共有10000条查询结果,搜索用时 156 毫秒
31.
Most eukaryotic transmembrane and secreted proteins contain N-terminal signal peptides that mediate insertion of the nascent translation products into the membrane of the endoplasmic reticulum. After membrane insertion, signal peptides typically are cleaved from the mature protein and degraded. Here, we tested whether a small hydrophobic protein selected for growth promoting activity in mammalian cells retained transforming activity while also acting as a signal peptide. We replaced the signal peptide of the PDGF β receptor (PDGFβR) with a previously described 29-residue artificial transmembrane protein named 9C3 that can activate the PDGFβR in trans. We showed that a modified version of 9C3 at the N-terminus of the PDGFβR can function as a signal peptide, as assessed by its ability to support high level expression, glycosylation, and cell surface localization of the PDGFβR. The 9C3 signal peptide retains its ability to interact with the transmembrane domain of the PDGFβR and cause receptor activation and cell proliferation. Cleavage of the 9C3 signal peptide from the mature receptor is not required for these activities. However, signal peptide cleavage does occur in some molecules, and the cleaved signal peptide can persist in cells and activate a co-expressed PDGFβR in trans. Our finding that a hydrophobic sequence can display signal peptide and transforming activity suggest that some naturally occurring signal peptides may also display additional biological activities by interacting with the transmembrane domains of target proteins.  相似文献   
32.
Alterations in energy (glucose) metabolism are key events in the development and progression of cancer. In pancreatic adenocarcinoma (PDAC) cells, we investigated changes in glucose metabolism induced by resistance to the receptor tyrosine kinase inhibitor (RTKI) axitinib. Here, we show that human cell lines and mouse PDAC cell lines obtained from the spontaneous pancreatic cancer mouse model (KrasG12DPdx1-cre) were sensitive to axitinib. The anti-proliferative effect was due to a G2/M block resulting in loss of 70–75% cell viability in the most sensitive PDAC cell line. However, a surviving sub-population showed a 2- to 3-fold increase in [C-14]deoxyglucose ([C-14]DG) uptake. This was sustained in axitinib-resistant cell lines, which were derived from parental PDAC. In addition to the axitinib-induced increase in [C-14]DG uptake, we observed a translocation of glucose transporter-1 (Glut-1) transporters from cytosolic pools to the cell surface membrane and a 2-fold increase in glycolysis rates measured by the extracellular acidification rate (ECAR). We demonstrated an axitinib-induced increase in phosphorylated Protein Kinase B (pAkt) and by blocking pAkt with a phosphatidylinositol-3 kinase (PI3K) inhibitor we reversed the Glut-1 translocation and restored sensitivity to axitinib treatment. Combination treatment with both axitinib and Akt inhibitor in parental pancreatic cell line resulted in a decrease in cell viability beyond that conferred by single therapy alone. Our study shows that PDAC resistance to axitinib results in increased glucose metabolism mediated by activated Akt. Combining axitinib and an Akt inhibitor may improve treatment in PDAC.  相似文献   
33.
34.
Abstract: Phosphorylation of G protein-coupled receptors is considered an important step during their desensitization. In SK-N-BE cells, recently presented as a pertinent model for the studies of the human δ-opioid receptor, pretreatment with the opioid agonist etorphine increased time-dependently the rate of phosphorylation of a 51-kDa membrane protein. Immunological characterization of this protein with an antibody, raised against the amino-terminal region of the cloned human δ-opioid receptor, revealed that it corresponded to the δ-opioid receptor. During prolonged treatment with etorphine, phosphorylation increased as early as 15 min to reach a maximum within 1 h. Phosphorylation and desensitization of adenylyl cyclase inhibition paralleled closely and okadaic acid inhibited the resensitization, a result strongly suggesting that phosphorylation of the δ-opioid receptor plays a prominent role in its rapid desensitization. The increase in phosphorylation of the δ-opioid receptor, as well as its desensitization, was not affected by H7, an inhibitor of protein kinase A and protein kinase C, but was drastically reduced by heparin or Zn2+, known to act as G protein-coupled receptor kinase (GRK) inhibitors. These results are the first to show, on endogenously expressed human δ-opioid receptor, that a close link exists between receptor phosphorylation and agonist-promoted desensitization and that desensitization involves a GRK.  相似文献   
35.
36.
Two novel type I casein kinases named CK-1B and CK-1C have been purified from maize endosperm (three weeks after anthesis) by a six step procedure involving ammonium sulfate precipitation, DEAE-cellulose, Sephadex G-75, Heparin-sepharose, and ATP-agarose chromatography. The catalytic subunits of both enzymes were identified as a 35-37 kDa polypeptide doublet by in situ phosphorylation after SDS/PAGE in active casein gel. Both enzymes required 5-10 mmol · L−1 Mg2+ for maximal activity, could utilize only ATP as phosphate donor, were insensitive to heparin, were not autophosphorylated, had a pH optimum at pH 7 to 8.5, and exclusively phosphorylated acidic proteins (casein, phosvitin). Regarding the enzyme differences, their properties were as follows: a) CK-1B could bind on ATP-agarose affinity column, while CK-1C could not; b) the activity of CK-1C was strongly stimulated at low concentrations (1 mmol/L) of spermine, while that of CK-1B was inhibited; c) CK-1B and CK-1C Km values for ATP were 11 μmol · L−1 and 26 μmol · L−1, respectively; d) Mg2+ could substituted by Mn2+ in the CK-1B catalytic activity (by about 80 percnt;); e) CK-1B phosphorylated serine, while CK-1C both serine and threonine on casein. The combination of these results with those from Babatsikos and Yupsanis (2000) brings the number of investigated maize endosperm CK-I isoforms to three (CK-1B, CK-1C, and CK-1E). This is the first biochemical approach demonstrating that multiple isoforms of CK-I casein kinases are present in the same plant tissue.  相似文献   
37.
38.
In vitro, 4-amino-6-trichloroethenyl-1,3-benzenedisulfonamide, a potent fasciolicide, causes a potent concentration-dependent inhibition of glucose uptake by mature Fasciola hepatica. In F. hepatica treated with the disulfonamide and then fed [U-14C]glucose, there was a 60% inhibition of glucose utilization and a corresponding inhibition of acetate and propionate formation. Treated fluke parasites possessed much lower levels of adenosine triphosphate, phosphoenolpyruvate, glucose 6-phosphate, and fructose 6-phosphate than untreated parasites and contained higher levels of glycerol and the free sugars fructose and mannose. Direct measurement of the effect of the disulfonamide on the glycolytic enzymes of F. hepatica demonstrated that 3-phosphoglycerate kinase (EC 2.7.2.3) and phosphoglyceromutase (EC 2.7.5.3) were inhibited. It is therefore suggested that the fasciolicidal activity of 4-amino-6-trichloroethenyl-1, 3-benzenedisulfonamide is due to inhibition of the enzymes 3-phosphoglycerate kinase and phosphoglyceromutase which effectively blocks the Embden-Myerhof glycolytic pathway.  相似文献   
39.
The PSMD14 (POH1, also known as Rpn11/MPR1/S13/CepP1) protein within the 19S complex (19S cap; PA700) is responsible for substrate deubiquitination during proteasomal degradation. The role of PSMD14 in cell proliferation and senescence was explored using siRNA knockdown in carcinoma cell lines. Our results reveal that down-regulation of PSMD14 by siRNA transfection had a considerable impact on cell viability causing cell arrest in the G0-G1 phase, ultimately leading to senescence. The molecular events associated with decreased cell proliferation, cell cycle arrest and senescence include down-regulation of cyclin B1-CDK1-CDC25C, down-regulation of cyclin D1 and up-regulation of p21/Cip and p27/Kip1. Most notably, phosphorylation of the retinoblastoma protein was markedly reduced in PSMD14 knockdown cells. A comparative study with PSMB5, a subunit of the 20S proteasome, revealed that PSMB5 and PSMD14 have different effects on cell cycle, senescence and associated molecular events. These data support the view that the 19S and 20S subunits of the proteasome have distinct biological functions and imply that targeting 19S and 20S would have distinct molecular consequences on tumor cells.  相似文献   
40.
Studies were undertaken to determine whether the effect of alloxan to inactivate a membrane-bound calcium- and calmodulin-dependent protein kinase was specific for the pancreatic islets and whether inactivation of the kinase occurred also after injection of a diabetogenic dose of alloxan into rats. The effect of alloxan was also examined on similar particulate calcium- and calmodulin-dependent kinases present in two other secretory tissues, mammary acini and forebrain. Exposure of alloxan to cell-free preparations of all secretory tissues examined inhibited the calcium- and calmodulin-dependent kinase activities, suggesting that the specificity of alloxan action was not due to the presence in islets of a kinase uniquely sensitive to alloxan. To determine whether the selective effect of alloxan action was mediated at the cellular level, experiments were performed with alloxan presented to intact cells. Whereas alloxan exposure to viable cell preparations of islets and brain decreased the subsequently measured calcium- and calmodulin-dependent protein kinase activity, the activity measured in mammary acini exposed to these alloxan concentrations was unaffected. Injection (i.v.) of a diabetogenic dose of alloxan (50 mg/kg) produced an immediate (10 min) and selective inactivation of the calcium- and calmodulin-dependent protein kinase in pancreatic islests but had no effect on the similar kinases measured in brain and mammary acini. These results indicate that the unique sensitivity of islets to alloxan may result from the ability of alloxan to rapidly gain intracellular access and then inactivate this kinase activity. The selective effect of alloxan injection on this islet protein kinase is consistent with the hypothesis that inactivation of the kinase by alloxan is related to its diabetogenic effect in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号